Портал о СТРОИТЕЛЬСТВЕ и РЕМОНТЕ
Инф-Ремонт  | Новости |  Прайс на рекламу  | О портале |  Услуги |  Форум |  Калькуляторы |  Контакты  

§ 3. Основное дифференциальное уравнение диафрагмы: расчет действия нагрузок

Основное дифференциальное уравнение диафрагмы или рамо-диафрагмы, загруженной горизонтальной и вертикальной нагрузками; особенности расчета рам: расчет действия нагрузок

Некоторые особенности выявляются только в работе на момент Мoв (рис. 8-17, д). Действительно, в этом случае изгиб перемычек происхо­дит в другую сторону, чем это было при действии горизонтальной нагрузки (рис. 8-7, б и 8-3); соответственно угол наклона α2 меняет знак и вы­ражается теперь по аналогии с (8-2) как

α2= -sN’ (8-41)

Угол α1 зависит теперь от момента Мoв(x) и нормальных сил N(x), возникающих в столбах в результате сопротивления перемычек. Используя (8-5), найдем

формула

Имея в виду, что по рис. (8-7,a)

α1 = (c2 – c1)/b,

и раскрывая значение Мoв по (8-36), получим

 

формула

Интегрируя первый член с учетом (8-32) и заменяя множитель при втором интеграле через k, как это было сделано в (8-10), получим

формула

Исходное уравнение (8-1) в данном случае, поскольку на сечение действуют только осевые силы и внешний момент отсутствует, будет записываться так:

ΣM + Nb = 0. (8-45)

Приняв во внимание, что ΣM = - α´ ΣB и что α, согласно рис. 8-7, б, определяется как разность выражений (8-44) и (8-41), найдем из (8-45):

- (p2 – βp1)x/E2F2b – kN + sN’’ = (b/ΣB)N. (8-46) 

Откуда, с учетом (8-36)

N’’ – λ2N = Мoв(x)/sB (8-47)

где λ определяется по (8-13);

В¯ = E2F2b2/(1 + β) = Bo - ΣB.  (8-48)

Поскольку полученное уравнение (8-47) отличается от (8-12) только правой частью, то совместному действию М°(х) и Mв(х) будет соответствовать

N’’ – λ2N  = 1/s (Mв(х)/B¯ - М°(х)/ ΣB). (8-49)

Последнее уравнение и есть основное уравнение диафрагмы или рамо-диафрагмы, находящейся под действием неравномерной внецентренной вертикальной нагрузки.

Если на рассматриваемую несущую конструкцию действуют одновременно вертикальная внецентренная и горизонтальная нагрузки, то уравнение (8-49) остается в силе, но значение М°(х) в правой части подставляется в него как сумма моментов от обоих видов нагрузки, т. е. как сумма выражений (7-22) и (8-40).

Решением уравнения (8-49) в этом общем случае будет

N(х) = C1shλх + С2chλх + М°(х)/λ2sΣB - Mвo(х)/ λ2sB - qx/λ4 sΣB. (8-50)

Постоянная интегрирования С1 согласно (8-17),

C1 = qA/λ4sΣB + 1/λ3schλH (mвo/B¯ – mo/ΣB (8-51)

а постоянная С2 сохраняет свое значение (8-21).

<< Основное дифференциальное уравнение диафрагмы: приведение силы к равновеликим силам

Основное дифференциальное уравнение диафрагмы: расшифровка обозначений в формулах >>


 
Информационные разделы Инф-РемонтРАЗДЕЛЫ:


Яндекс.Метрика
Инф-Ремонт - информационный портал.
Технологии, обзоры, фото строительства и ремонта. (c) 2010-2017
При копировании материалов с сайта или цитировании его части, необходимо поставить ссылку на портал Инф-Ремонт!