Портал о СТРОИТЕЛЬСТВЕ и РЕМОНТЕ
Инф-Ремонт  | Новости |  Прайс на рекламу  | О портале |  Услуги |  Форум |  Калькуляторы |  Контакты  

§ 3. Основное дифференциальное уравнение диафрагмы: действие горизонтальной нагрузки

Основное дифференциальное уравнение диафрагмы или рамо-диафрагмы, загруженной горизонтальной и вертикальной нагрузками; особенности расчета рам: действие горизонтальной нагрузки

Наиболее распространенным в практике способом восприятия горизонтальных нагрузок (а также и моментов, возникающих в результате внецентренного приложения вертикальных нагрузок) является передача их на стены жесткости - вертикальные диафрагмы. Рассмотрим двухстолбовую диафрагму, в которой столбы имеют различную ширину и соединяются перемычками или связями сдвига (рис. 8-1). Расчет диафрагмы может быть выполнен на основе общей теории составных стержней [11]. Однако это будет сопряжено с некоторыми трудностями, поскольку такая задача в [11] непосредственно не рассматривалась. Ниже предлагается способ расчета [12], разработанный применительно к специфике данной задачи.

Вначале рассмотрим действие на диафрагму только горизонтальной нагрузки. Так как деформации элементов малы сравнительно с их длиной, то соблюдается закон независимости действия сил.

Под действием горизонтальной нагрузки в столбах диафрагмы появятся моменты, нормальные и поперечные силы, а в связях (перемычках) - только моменты и поперечные силы.

Если бы перемычки (связи) были совершенно жесткими и в них не возникали бы деформации изгиба и сдвига, диафрагма деформировалась бы как сплошной консольный стержень под действием всей приложенной к ней нагрузки.

Если бы перемычки (связи) были абсолютно податливыми, то каждый столб диафрагмы деформировался бы самостоятельно под действием приходящейся на него доли нагрузки.

Напряжения, которые возникли бы в этих двух крайних случаях в горизонтальных сечениях диафрагмы, показаны на рис. 8-2. Для большей наглядности на этом рисунке столбы приняты одинаковыми по ширине. Очевидно, в действительности, при конечной жесткости связей или перемычек, в столбах возникнут напряжения, характеризуемые некоторой промежуточной эпюрой (рис. 8-2, в). Эта эпюра в каждом столбе получается как сумма эпюр, возникающих под влиянием момента и нормальной силы, которые действуют в столбе. Причем полный внешний изгибающий момент в любом сечении х (рис. 8-3)

Вертикальная диафрагма с одним рядом проемов

Рис. 8-1. Вертикальная диафрагма с одним рядом проемов

1 – столбы; 2 – надпроемные перемычки

М° = ΣM + Nb, (8-1)

где М - моменты в столбах;

N - нормальная сила в столбах, возникающая под действием горизонтальной нагрузки;

b - расстояние, между центрами тяжести сечения столбов.

<< Положения расчёта несущих конструкций многоэтажных зданий: расчет эпюры ветрового давления

Основное дифференциальное уравнение диафрагмы: зависимость угла наклона столба >>


 
Информационные разделы Инф-РемонтРАЗДЕЛЫ:


Яндекс.Метрика
Инф-Ремонт - информационный портал.
Технологии, обзоры, фото строительства и ремонта. (c) 2010-2017
При копировании материалов с сайта или цитировании его части, необходимо поставить ссылку на портал Инф-Ремонт!